Chapter \#3 Powers \& Exponents

Power an expression made up of a base and an exponent

base the \# you multiply by itself in a power

$$
\begin{aligned}
& 4^{2}=4 \times 4 \\
& 4^{3}=4 \times 4 \times 4 \\
& 4^{4}=4 \times 4 \times 4 \times 4
\end{aligned}
$$

Exponent the \# of times you multiply the base in a power
Ex.\# I Write as a power (exponential form) and solve evaluate
(a) $2 \times 2 \times 2 \times 2 \times 2=2^{5}=32$
(b) $(3)(3)(3)=3^{3}=27$
(c) $5 \cdot 5 \cdot 5=5^{3}=125$
(d) $7=7^{\prime}=7$

Ex $\# 2$ Write as a repeated multiplication and solve
(a) 4^{6}

$$
\begin{aligned}
& 46 \\
= & 4 \times 4 \times 4 \times 4 \times 4 \times 4 \\
& 4096
\end{aligned}
$$

(b) 9^{5}
$=\frac{9 \times 9 \times 9}{59.049} \times 9 \times 9$

POWERS with Negative Bases
Ex \#3 Identify the base of each power then evaluate
(a)

$$
\begin{aligned}
& (-3)^{4} \\
= & (-3) \times(-3) \times(-3) \times(-3) \\
= & 9
\end{aligned}
$$

(b)

$$
\text { 5) } \begin{aligned}
& -34 \\
= & -3 \times 3 \times \frac{3}{3 A S E} \frac{3}{3} \times 3 \\
= & -9 \times 9^{x}
\end{aligned}
$$

$$
\text { (c) } \begin{aligned}
& -1(-3)^{4} \times \text { BASE } \\
= & -(-3) \times(-3) \times(-3) \times(-3)= \\
= & -\quad 9 \quad \times \quad 9
\end{aligned}
$$

* another way of whiting this

$$
\begin{aligned}
-(-3)^{4} & =-1(-3)^{4} \\
& =-1 \times(-3) \times(-3) \times(-3) \times(-3)
\end{aligned}
$$

pg 97 \#4-18, 22, 23

