3.2 Perfect Squares, Cubes and their Roots

The square root of a number, \sqrt{n}, is a positive \# whose square is n
*Don't
need to write the 2 \#

$$
\sqrt[3]{n}, \sqrt[4]{n}
$$

* we do wite the 3 for the cube root

Any whole \# that is the area of a square with a whole \# side length is a perfect square.

Ex .\#1

$$
-\underset{1}{1} \mathrm{~cm}^{2} \quad \sqrt{25}=5 \mathrm{~cm}\left[\Rightarrow 5^{2}=5 \times 5=25\right]
$$

The cube root of a number $\sqrt[3]{n}$ is a \# whose cube is n Ex.\#2

Ex.\#2

Find the edge length.

$$
\sqrt[3]{216}=6\left[\Rightarrow 6^{3}=6 \times 6 \times 6=216\right]
$$

Yes! it is a perfect cube

$$
\mathrm{pg} \cdot 146 \# 4,5,7,8,10 \quad \mathrm{pg} \cdot 149 \# 6-10
$$

$$
\operatorname{pg} \cdot 206 \# 2^{1}
$$

