3.6 Polynomials of the Form $a x^{2}+b x+c$
*use the same strategies as for binomials
4 the only difference is the coefficients of the variables are NOT 1

$$
(3 d+4)(4 d+2)
$$

METHoD I Distributive Property
(Expand and Simplify)

$$
\begin{aligned}
& (3 d+4)(4 d+2) \\
= & 12 d^{2}+6 d+16 d+8 \\
= & 12 d^{2}+22 d+8
\end{aligned}
$$

METHOD 2: Algebra Tiles
$4 d+2$

1. draw a grind
2. write in dimensions
3. Solve

METHOD 3: Area Model

$$
\left.\left.\begin{array}{l}
3 d+4 \\
4 d \left\lvert\, \begin{array}{|c|c|}
\hline(4 d)(3 d) \\
=12 d^{2}
\end{array}\right. \\
\begin{array}{l}
(4 d)(4) \\
=16 d
\end{array} \\
2(3 d)(2) \\
=6 d
\end{array} \right\rvert\, \begin{array}{c}
(4)(2) \\
=8
\end{array}\right]
$$

1. draw a rectangle
2. Write in dimensions
3. divide into 4 smaller rectangles
4. calculate

* Now, factor $a x^{2}+b x+c \rightarrow(a x+b)(c x+d)$

$$
\begin{aligned}
& \left.\frac{\text { Ex.\#1 }}{(a .)} 4 g^{2}+11 g+6\right) \\
& (-x+=x+-) \\
& =(1 g+2)(4 g+3) \\
& =4 g^{2}+3 g+8 g+6 \\
& =4 g^{2}+11 g+6
\end{aligned}
$$

