Rational Number
4 has a decimal that terminates or repeats
4 radicals that are $\sqrt[2]{ }$ or $\sqrt[3]{ }$ of perfect squares
4 any \# that can be written in the form $\frac{m}{n}$, where $n \neq 0$ and $m: n$ are integers,

$$
\text { (set of \#'s ex. }-3,-2,-1,0,1,2,3 \ldots \text { etc.) }
$$

Irrational Number
4 can't be in the form $\frac{m}{n}$, where $m \vdots n$ are integers, $n \neq 0$ 4 the decimal neither terminates nor repeats

$$
\text { ex } \begin{aligned}
\sqrt{2} & =1.414213562 \ldots \\
\sqrt[3]{-50} & =-3.68403499 \ldots .
\end{aligned}
$$

Ex.\#
Rational or Irrational
(a.) $-\frac{3}{5}=-0.6$
(b.) $\sqrt{14}=3.741 \ldots$
(c.) $\sqrt[3]{\frac{8}{27}}=\frac{2}{3}=\frac{0 . \overline{6}}{\uparrow}$

Irrational
Rational
Square Root of a Number:

$$
\begin{aligned}
& \sqrt[2]{4}=2 \times 2 \quad \text { multiplying } 2 \# \text { is together }=2 \\
& \sqrt[2]{16}=4 \times 4 \quad \text { multiplying } 2 \# \text { is together }=4
\end{aligned}
$$

Cube Root of a Number:

$$
\sqrt[3]{27}=3 \times 3 \times 3 \text { multiplying } 3 \# \text { is together }=3
$$

Ex.\#2 Solve
(a.) $\sqrt[4]{16}=2 \times 2 \times 2 \times 2$
multiplying 4 \#ls together

$$
=2
$$

(b.) $\sqrt[5]{32}=2 \times 2 \times 2 \times 2 \times 2$
multiplying $5 \#$'s together

$$
=2
$$

Please do pg. $211 \# 3-6,9-11$

