REAL: $\quad a^{m} \cdot a^{n}=a^{m+n}$
To multiply:
\rightarrow same base
\rightarrow ADD exponents.
We can extend this law to powers with fractional exponents with numerator 1

POWERS With RATIONAL ERONENTS
with NUMERATOR I
$\rightarrow n$ is a natural $\# \quad \frac{1}{x^{n}}=\sqrt[n]{x}$

EX.\#

$$
\begin{aligned}
5^{\frac{1}{2}} \cdot 5^{\frac{1}{2}} & =5^{\frac{1}{2}+\frac{1}{2}} \quad \text { or... } \sqrt[2]{5^{1}} \cdot \sqrt[2]{5^{1}} \\
& =5^{\frac{2}{2}} \\
& =5^{1}=5 / \sqrt{5} \cdot \sqrt{5}
\end{aligned}=\sqrt{5 \cdot 5}
$$

Raising a \# to the exponent $\frac{1}{2}$ is equivalent to taking the square root of the $\#$

$$
5^{\frac{1}{2}}=\sqrt[2]{5^{1}}
$$

Ex, \#2 Evaluate without using a calculator
(a.) $1000^{\frac{1}{3}}$

$$
\begin{aligned}
& =\sqrt[3]{1000^{1}} \\
& =\sqrt[3]{10 \times 10 \times 10} \\
& =10
\end{aligned}
$$

(C) $(-8)^{\frac{1}{3}}$

$$
\begin{aligned}
& =\sqrt[3]{-8^{1}} \\
& =\sqrt[3]{-2 \times 2 \times 2} \\
& =-2
\end{aligned}
$$

(d.) $\left(\frac{16}{81}\right)^{\frac{1}{4}}$
(b.) $0.25^{\frac{1}{2}}$

$$
\begin{aligned}
& =\sqrt[2]{0.25} \\
& =\sqrt{0.5 \times 0.5}=0.5
\end{aligned}
$$

$$
=\sqrt[4]{\left(\frac{16}{81}\right)^{\prime}}=\sqrt{\frac{2 \times 2 \times 2 \times 2}{3 \times 3 \times 3 \times 3}}=\frac{2}{3}
$$

Powers with Rational Exponents
4 when m : n are natural $\#$ is
$4 x$ is a rational \#

$$
\begin{aligned}
x^{\frac{m}{n}} & =\left(x^{\frac{1}{n}}\right)^{n} \text { and } & x^{\frac{m}{n}} & =\left(x^{m}\right)^{\frac{1}{n}} \\
& =(\sqrt[n]{X})^{m} & & =\sqrt[n]{x^{m}}
\end{aligned}
$$

Ex.\#3

$$
\begin{aligned}
8^{\frac{2}{3}} & =8^{\frac{1}{3} \cdot 2} \\
& =\left(8^{\frac{1}{3}}\right)^{\cdot 2} \\
& =(\sqrt[3]{8})^{2} \\
& =(2)^{2} \\
& =4
\end{aligned}
$$

$$
8^{\frac{2}{3}}=8^{2 \cdot \frac{1}{3}}
$$

$$
=\left(8^{2}\right)^{\frac{1}{3}}
$$

$$
=\sqrt[3]{\left(8^{2}\right)^{1}}
$$

$$
=\sqrt[3]{64}
$$

$$
=4
$$

$$
\begin{aligned}
& \frac{\text { Ex }}{\text { (a.) }} 0.01^{\frac{3}{2}} \\
& =\sqrt{(0.01)^{3}} \\
& =\sqrt{0.000001} \\
& =0.001
\end{aligned}
$$

(c.) $81^{\frac{3}{4}}$

$$
\begin{aligned}
& \sqrt[4]{81^{3}} \\
& =27
\end{aligned}
$$

(b.) $(-27)^{\frac{4}{3}}$

$$
\begin{aligned}
& =\sqrt[3]{(-27)^{4}} \\
& =\sqrt[3]{+531441} \\
& =81
\end{aligned}
$$

(d.) $0.75^{1.2}$

$$
=0.7080
$$

Exercises pg. 227 \# 3-12, 15, 18

