Two \#'s with a product of 1 are reciprocals ex. 4 and $\frac{1}{4}$ are reciprocals because $\frac{4}{1} \times \frac{1}{4}=\frac{4}{4}=1$
ex. $\frac{2}{3}$ and $\frac{3}{2}$ because $\frac{2}{3} \times \frac{3}{2}=\frac{6}{6}=1$
RECALL: $a^{m} \cdot a^{n}=a^{m+n} \quad a^{0}=1$

POWERS with NEGATIVE EXPONENTS
When x is any non-zero $\#$ and n is a rational \# x^{-n} is the reciprocal of x^{n}

$$
x^{-n}=\frac{1}{x^{n}} \text { and } \frac{1}{x^{-n}}=x^{n}
$$

Ex.\#|

$$
\begin{array}{rlr}
& 5^{-2} \cdot 5^{2} & \text { and } \\
= & 5^{-2+2} \cdot 5^{2} \\
= & 5^{0} & =\frac{1}{25} \cdot 25 \\
= & 1] & =\frac{25}{25}=1
\end{array}
$$

Ex, \#2 Evaluate each power
(a.) 7^{-2}
(b.) $/ 10)^{-3}$
(c.) $(-1.5)^{-3}$

$$
\begin{array}{lll}
=\frac{1}{7^{2}} & \text { (b.) }\left(\frac{10}{3}\right)^{-3} & \text { (c.) } \\
=\frac{1}{(-1.5)^{-3}} \\
=\frac{1}{49} & =\frac{1}{(-105)^{3}} \\
=\left(\frac{3}{3}\right)^{3} & =\frac{1}{-3} \\
\left.=\frac{10}{10}\right)^{3}
\end{array}
$$

Ex,\#3 Evaluate each power without using a calculator
(a.)

$$
16^{-\frac{5}{4}}
$$

$$
=\frac{1}{16^{\frac{5}{4}}} \iota^{4 \text { root }}
$$

$$
=\frac{1}{(\sqrt[4]{16})^{5}}
$$

$$
=\frac{1}{(\sqrt[4]{2 \times 2 \times 2 \times 2})^{5}}
$$

$$
=\frac{1}{(2)^{5}} \sqrt{ }
$$

$$
=\frac{1}{32} \sqrt{ }
$$

$$
p g .233 \# 3-10,12,13
$$

$$
\text { (b.) }\left(\frac{25}{36}\right)^{\frac{-1}{2}}
$$

$$
=\frac{1}{\left(\frac{25}{36}\right)^{\frac{1}{2}}}
$$

$$
=\left(\frac{36}{25}\right)^{\frac{1}{2}} \kappa \text { square not }
$$

$$
=\left(\sqrt[2]{\frac{36}{25}}\right)^{\prime}
$$

$$
=\frac{6}{5}
$$

