NOTES 6.2: Characteristics of the Equations of Polynomial Functions

- the standard form of a function gives us information about the function based on the leading coefficient and the constant term
- the leading coefficient is the coefficient of the term with the greatest degree in a polynomial function ex.

$$
y=2 x^{3}+8 x^{2}-x+5
$$

- the constant term is the term in a polynomial function that does not have a variable
ex.

$$
{ }^{f(x)-2 x^{2}+x^{2}-x+x} \text { constant }
$$

- different functions have different standard forms
ex. 1. linear function $\rightarrow f(x)=a x+b$ where $a \neq 0$

2. quadratic function $\rightarrow f(x)=a x^{2}+b x+c$ where $a \neq 0$ 3a) cubic function $\rightarrow f(x)=a x^{3}+b x^{2}+c x+d$ where $a \neq 0$

Ex \#1 a) Use your graphing calculator with a standard window setting to sketch the following graphs.

$$
y=2 x-6
$$

b)

e)
$y=x^{3}-5$
$y-x^{2}-4 x-2$

c)
$y=-2 x^{2}+2 x+7$

f)

b) How is the constant term of the function related to the y-intercept of the graph?
is the y-intercept
c) Complete the table below.

End Behavior

d) Which two properties of a function can be predicted from the standard form of the equation?

* end behaviour
* y-intercept
e) How can changing the constant term of a cubic function change the number of x-intercepts on the graph?
\# a negative constant \Rightarrow shifts the graph \downarrow \Rightarrow reduces \# of x-int
f) Why does the sign of the leading coefficient affect the end behavior of the graph? Its on the term with highest exponent \therefore will have the greatest effect on the y-value
g) How does the degree of a polynomial function relate to the maximum number of:
i) x-intercepts the graph may have? $\max \#$ of x-intercepts $=$ degree of function
ii) turning points the graph may have?
will be 1 less than the degree
Ex \#2 Determine the characteristics of each function using its equation.
a)

$$
f(x)=4 x+2
$$

b)

$$
f(x)=-5 x^{2}+2 x-1
$$

