slope - intercept form $\quad y=m x+b$
$m=$ slope
$b=y$-intercept
Slope-point form $y-y_{1}=m\left(x-x_{1}\right) \quad m=$ slope
(x_{1} and y_{1}) a point on the line
Ex \#1
Describe the graph of the linear function with this equation

$$
\begin{array}{r}
y+1=-\frac{1}{2}(x-2) \\
y_{1}
\end{array} \quad \text { slope }=-\frac{1}{2} \quad x_{1} \quad \text { passes thru }(-2,1)
$$

to graph: - plot the point $(-2,1)$

- use the slope $-\frac{1}{2}$ to plot another point - connect w/ line

Ex .\#2
Write an equation for the line that pass thru $S(2,-3)$ and is:
(a.) parallel to the line
(b.) perpendicular to the line

$$
y=\underset{\substack{\uparrow \\ \text { slop }}}{3 x}+5
$$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y-(-3)=3(x-2)
$$

* any line that is

$$
v+3=3(x-2)
$$ perpendicular to $y=3 x+5$ has a slope that is

$$
\begin{aligned}
& y-(-3)=3(x-2) \\
& y+3=3(x-2)
\end{aligned}
$$

perpenacmar to $y=3 x+5$
has a slope that is the negative reciprocal of $3 \therefore$ the slope is $-\frac{1}{3}$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y+3=-\frac{1}{3}(x-2)
\end{aligned}
$$

$$
\text { pg. } 372 \# 4-9,11-15,20
$$

