$$
y=m x+b \quad \text { slope-intercept form }
$$

$y-y_{1}=m\left(x-x_{1}\right)$ slope-point form
$A x+B y+C=0 \quad$ General form
whole \#
integers.

Ex.\#1 Write each equation in general form

$$
\begin{array}{ll}
\text { (a) } y^{x^{4}}=\left(-\frac{1}{4} x+3\right) \times 4 & \text { (b.) }(y+2)=\frac{3}{x}(x-4) \\
4 y=-\frac{4}{4} x+12 & 2 y+4=3(x-4) \\
4 y=-1 x+12 & -2 y+4 \\
+1 x+1 x-12 & 0=3 x-12-2 y-4 \\
-12 & 0=3 x-2 y-16 \\
1 x+4 y-12=0 &
\end{array}
$$

Ex.\#2 Determine the x-and y-intercepts of the line: slope?

$$
x+3 y+9=0
$$

x-intercept
substitute $y=0$
solve for x

solve for x

$$
\begin{array}{r}
x+3(0)+9=0 \\
x+0+y=0 \\
-9-9 \\
x=-9 \\
(-9,0)
\end{array}
$$

solve for y
$0+3 y+9=0$
$-9-9$

$$
\frac{3 y}{\$}=\frac{-9}{3}
$$

$$
y=-3
$$

$$
(0,-3)
$$

pg. $384 \# 4-9,12-15,18,22$
form.
solve for y

$$
\begin{gathered}
x+3 y+9=0 \\
-x \mid-9-x-9 \\
\frac{3 y}{3}=\frac{-x-9}{3}
\end{gathered}
$$

$$
y=-\frac{1}{3} x-\frac{9}{3}
$$

$$
y=-\frac{1}{3} x-3
$$

$$
\text { slope }=-\frac{1}{3}
$$

