- A monomial has only 1 term
ex $5.2 x .35^{2}$

MULTIPLICATION
METHOD I
\therefore I Multiply the numencal coefficients
2 Multiply the vanables (add exponents)
Ex \#1
(i) $(3 a)\left(4 b^{3}\right)$
b)

$$
=12 a b^{3}
$$

$-x^{2}(2 x y)$
c) $-2 y^{3}\left(4 y^{2}\right)$

$$
=-2 x^{3} y
$$

$$
=-8 y^{5}
$$

d)

$$
=\begin{aligned}
& \left(2 x^{2} y\right)(-3 x y) \\
& =-6 x^{3} y^{2}
\end{aligned}
$$

e)

$$
\begin{aligned}
& \left(x^{3}\right)\left(-3 x y^{3}\right)(4 y) \\
& =-12 x^{4} y^{4}
\end{aligned}
$$

f) $\left(-2 a^{3} b c^{2}\right)\left(-5 a c^{4} y^{2}\right)$

$$
\text { 9) } \begin{aligned}
& \left(\frac{4}{6} x\right) \div(3 x) \\
= & \frac{12 x^{2}}{6}=2 x^{2}
\end{aligned}
$$

METHOD 2 Use a model (Algebra Tiles)
Ex \#3

$$
\begin{aligned}
& (5 x)(2 x)=10 x^{2} \\
& \hline 10
\end{aligned}
$$

Ex $\# 4$

DIVISION
METHOD I
1 divide numerical coefficients
2 divide like variables (subtract exponents)
Ex \#5
a)

$$
\frac{8 x^{2}}{2 x}=4 x
$$

b) $16 y-4 y$
C) $\frac{-12 a b d}{-2 b d}$

$$
=\widehat{L I}
$$

$$
\text { d) } \begin{aligned}
& 18 x^{5} y^{2}-\left(-6 x^{2} y\right) \\
= & \text { e) } \begin{array}{ll}
& \frac{10 m^{8} n^{5}}{5 m^{3} n^{2}} \\
= & -3 x^{3} y
\end{array}=2 m^{5} n^{3}
\end{aligned}
$$

METHOD 2 use a model (Algebra Tiles)
Ex \# 6

$$
\frac{8 x y}{4 x}=2 y
$$

$$
p g 260 \# 3-9, \quad 11-19, \quad 21-23,
$$

