All the linear systems you studied earlier have had exactly 1 solution.

4 we graph a linear system to determine how many
solution's it has.
Ex \#1

$$
\begin{array}{r}
x+y=-3 \\
-2 x+y=3
\end{array}
$$

The graphs intersect @ $(-2,-1)$ so there is only 1 solution

$$
\begin{aligned}
& x=-2 \\
& y=-1
\end{aligned}
$$

Ex \#2

$$
\begin{aligned}
& -4 x+2 y=8 \\
& -2 x+y=-2
\end{aligned}
$$

The graphs don't intersect so there is No solution because the slopes of the lines are equal; the lines are parallel
Ex.\#3

$$
\begin{aligned}
& 2 x+y=-1 \\
& 4 x+2 y=-2
\end{aligned}
$$

because the lines have equal slopes and the same y-intercept, they are coincident' lines

Since the graphs overlap (coincide), every point on the lines are solutions \rightarrow Infinite solutions

means unlimited or without bound

Ex.\#4 Determine the \# of solutions of each linear system.

$$
\text { (a) } \begin{aligned}
& x+y=3 \longrightarrow \quad \text { rearrange it } \\
& 2 x-y=-2
\end{aligned} \quad \text { slope }=-1 \text {, } y \text {-internet: } 3
$$

slopes are different \therefore lines intersect @ exactly I point \therefore only 1 solution!
(b.)

$$
\begin{gathered}
4 x+6 y=-10 \\
-2 x-3 y=5 \\
\downarrow \\
-\frac{3 y}{}=\frac{2 x+5}{-3} \\
y=\frac{-2}{3} x-\frac{5}{3}
\end{gathered}
$$

$$
\frac{6 y}{6}=\frac{-4 x}{6}-\frac{10}{6}
$$

$$
y=-\frac{2}{3} x-\frac{5}{3}
$$

The slope-intercept forms of both equations are the same, so the lines are coincident and the linear system has infinite solutions
(c.)

$$
\begin{array}{cc}
\begin{array}{l}
2 x-4 y=-1 \\
3 x-6 y=2
\end{array} & \begin{array}{l}
-\frac{-4 y}{-4}=\frac{-2 x-1}{-4} \\
L
\end{array} \\
\begin{array}{ll}
\frac{6}{-6} y=\frac{-3 x+2}{-6} & y=\left(\frac{1}{2} x+\frac{1}{4}\right.
\end{array} \\
y=\left(\frac{1}{2} x-\frac{1}{3}\right. & \text { slopes are ec }
\end{array}
$$

slopes are equal! y-intercepts are different \therefore lines are parallel and the linear sister
has no solution
pg. $448 \# 4-8,22$

