Alvin is cooking a turkey in a very old oven, and needs to heat the turkey to an internal temperature of 250 degrees. For absolutely no reason at all, he decides to make a table of values comparing how long it takes to reach different temperatures:
hours
X represents the amount of time in
Y represents the temperature in degrees

x	y
0	0
1	50
2	100
3	150
4	200

Does this represent a linear relationship? YeS
Temperature us time for cooking a turkey

What is the relationship between X and y ?
The relationship can be represented in 3 ways:

1. Words every time TIME goes up by I hour, the temperature goes up by 50°
${ }^{2}$ ordered Pairs $(2,100)$ or $(1,50)$
2. Algebraic Expression
$50 x=y$ or $y=50 x$ equation
Avaroble is: equal An expression is Another \#

Letters that represent a \# that can change or vary
How can yo tell if a table represents a linear relationship?
represented by math steps that may involve a variable eg $50 x$
B is not a linear

Relationship A

X	2	4	6	8
y	1	5	9	13

relationship.
Relationskip B

x	1	2	3	4
y	1	4	7	9

Is there a way to tell if a table represents a linear relationship WITHOUT graphing? Yes' patten'
Think about how you can describe the relationship in words:
Every time x increases by, then y
increases by
You can tell if a table represents a linear relationship by:
increases by
You can tell if a table represents a linear relationship by:
seeing if x always increases by same \# and Y always increases by the

Problem:
Wendy is buying shirts. The company charges $\$ 60$ for the first shirt, and $\$ 15$ for each extra shirt. Complete the table:

each extra shirt. Complete the table:				
Cos shirts	1	2	3	4
Cost	60	75	40	105

Is this a linear relationship? How do you know?
ty is because every time x increases by 1 , y increases
How much should 12 shirts cost? II increases of 1

$$
\begin{aligned}
& 15 \times 11+60= \\
& 165+60=
\end{aligned}
$$

costs $60 \longrightarrow 225$ Formula $C=15(n-1)+60$
Does this represent a linear 11 increases relationship?

What happens if you try to plot it on a graph?
still shows
a linear relationship

There is a consistent pattern, but ...

