Solving 2 -step equations with fractions

* isolate the variable in a 2 -step equation * use the reverse order of operations

operation	opposite operation
+	-
-	+
x	\div
+	x

Ex .\#1
(a)

$$
\begin{array}{rlrl}
2 x+\frac{1}{10}=\frac{3}{5}-\frac{1}{10} & \text { (b) } x-2 /=8 \\
\hdashline \frac{1}{10} & & x=10 \\
2 x=\frac{3 \times 2}{5 x 2} \frac{1}{10} & \\
2 x=\frac{6}{10}-\frac{1}{10} & \text { (c.) } 5 x+4=-16 \\
2 x=\frac{5}{10} & \frac{-4}{5} & \frac{5 x}{5}=\frac{-20}{5} \\
2 x & & x=-41
\end{array}
$$

$$
\begin{aligned}
& 2 x=\frac{1}{10} \\
& \frac{2 x}{x}=\frac{1}{2} \because\left(\frac{2}{1}\right) \\
& x=\frac{1}{2} \times \frac{1}{2} \\
& x=\frac{1}{4}
\end{aligned}
$$

$$
x=-4
$$

(d.)

$$
\begin{array}{r}
3 x+2+2 x=7 \\
5 x+2=7 \\
-2=-2 \\
\frac{5 x}{5}=\frac{5}{5} \\
x=1
\end{array}
$$

(e.)

$$
\begin{aligned}
& \frac{k}{3}-\frac{\pi}{2}=-1 \frac{3}{4}+\frac{1}{2} \\
&+\frac{1}{2}: \\
& \frac{k}{3}=-\frac{7}{4}+\frac{1}{2} \\
& \frac{k}{3}=-\frac{7}{4}+\frac{2}{4} \\
& \frac{k \times 8}{Z}=-\frac{5}{4} \times 3 \\
& k \frac{15}{4}=-3 \frac{3}{4}
\end{aligned}
$$

$$
\text { pg. } 311 \# 7-15,17,18,21,22,28-31
$$

