6.1 Representing Patterns

Patterns can be described:

- in words
- a table
- an equation
ex. Table of Values

Figure Number. n	Perimeter, p
+1	7
+1	1
2	$102+3$
$+1\{3$	132
+4	$162+3$

6.2 Interpreting Graphs

Analyze the graph of a linear relation

x-axis is horizontal $=$ independent variable
y-axis is vertical $=$ dependent variable

The point (coordinates) will be given as (x, y)

Interpolate: estimate a value between 2 given points
extrapolate: estimate a value beyond a given set of values
6.3 Graphing linear Relations

You can graph a linear relation represented by an equation:

- use the equation to make a table of values
- graph

4 if its a straight line \Rightarrow Linear Relation
Equations are in the form:

$$
\begin{aligned}
& \text { tin } \quad . \quad \text { slope } i: i=\frac{\operatorname{rin}}{\operatorname{hn}}=\frac{\alpha}{1}=\alpha \\
& y=-2 x+3
\end{aligned}
$$

Ex .\#4.
Write an equation from a table of values

0	-8
x	y
$1(1$	-5
2	-2
+16	2
3	$122+3$
+16	$42+3$
+16	$72+3$

$$
\begin{aligned}
& y=\frac{m x+b^{\downarrow}}{\downarrow} \begin{array}{l}
\text { slope }=\frac{\text { rids }}{n n}=\frac{3}{1}=3 \\
y=3 x-8
\end{array} \\
& y=-8 \text {-inept } \\
& y=3
\end{aligned}
$$

