slope: - a measure of how I quantity changes with respect to the other

- it can be determined by calculating $\frac{\text { rise }}{\mathrm{wn}}$
rise \rightarrow vertical distance
$\frac{\text { ron }}{\rightarrow \text { horozontal distance }}$

Ex\#\# graphs

$$
\text { slope }=\frac{\text { rise }}{\text { rn }}=\frac{-3}{9}=-\frac{1}{3}
$$

line segment is going
down to the right down to the right
$=y$ decreases, therefore vise is negative
$=x$ increases
Ex .\#2

undefined slope because.

$$
\begin{aligned}
\text { slope }=\frac{r i s e}{n n}=\frac{4}{0}= & \text { zero denominator } \\
& \text { fractions } \\
& \text { means } \\
& \text { undefined }
\end{aligned}
$$

Ex\#3. Draw a line segment with each slope
(a.) $\frac{4}{9}$
(b.) $-\frac{8}{3}$

* you can choose any points on the graph!

To find the slope of any line, use the formula

$$
\text { slope of line } A B=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Ex.\#y find the slope of a line that passes thru $E(4,-5)$ and $F(8,6)$

$$
\begin{gathered}
E\left(\begin{array}{cc}
4,-5) & F(8,6) \\
x_{1} & \left(8 y_{1}\right. \\
x_{2} y_{2}
\end{array}\right. \\
\text { slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{6-(-5)}{8-4}=\frac{11}{4}
\end{gathered}
$$

pg. $339 \# 4-9,11,13,17$

