
Non-Parallel Lines & Transversals

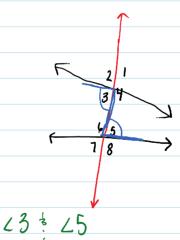
November-29-13


transversal: a line that intersects 2 or more lines

vertically opposite angles:

-angles created by intersecting lines that share only a vertex

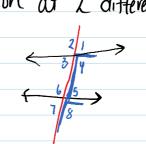
-these argles are opposite each other



21 3 L3 22 3 L4

interior alternate anglo

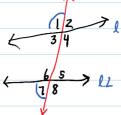
-angles in opposite positions between 2 lines intersected by a transveral


* the following
rules explain
relationships!
* doesn't mean they
are equal!

corresponding angles

- 2 angles that occupy the same position at 2 different

intersections F pattern, L, J, or T


11: 15, 12: 16 13: 17, 14: 18

Exterior alternate anglio - 1 in opposite positions outside 2 lines, intersected by a transversal and also on alternate sides of the same transversal

4 5 47

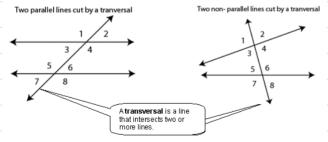
c2 & L8

Interior L on the same side of the transversal

→ [pattern, U,],

13 5 46

Exterior L on the same side of the transversal


L & L]

G&M - 11 Angle relationships formed by two non-parallel lines, or parallel lines intersected by a transversal: When two non-parallel lines or two parallel lines are intersected by a transversal a number of angle relationships are formed.

Example 11.1 – Parallel and non-parallel lines cut by a transversal:

Figure A

Figure B

Example 11.2 - Some angle relationships formed by parallel and non-parallel lines being cut by a

Applies to Figure Figure A Figure B The measures of vertical angles are $\angle 1$ and $\angle 4$ equal.

The measures of angles forming a linear pair total 180°. If you know one angle in a linear pair, then you can determine the \angle 2 and \angle 3 $\angle 1$ and $\angle 2$ yes yes other angle.

The measures of alternate exterior ∠5 and ∠6 $\angle 1$ and $\angle 8$ angles are equal. $\angle 2$ and $\angle 7$ The measures of alternate interior \angle 3 and \angle 6 ves no angles are equal. ∠4 and ∠5 The measures of the same-side interior $\angle 3$ and $\angle 5$ yes no angles are supplementary (sum to 180°) \angle 4 and \angle 6 The measures of corresponding angles ∠1 and ∠5 yes no are equal. $\angle 2$ and $\angle 6$