NOTES 6.3: Modelling Data with Lines of Best Fit

Lesson Focus: To determine the linear function that best fits a set of data and use the function to solve a problem.

- a scatter plot is a set of points on a grid used to visualize a relationship or a possible trend in the data
- the independent variable is the variable or characteristic of the data that is being manipulated
- the dependent variable is the variable or characteristic of the data that is being observed
ex. the height of an individual (dependent variable) is correlated to their age (independent variable)
- the independent variable is always placed on the horizontal axis of a graph
- if the points on a scatter plot seem to follow a linear trend, then there may be a linear relationship between the independent and dependent variables
- a line of best fit is a straight line that best approximates the trend in a scatter plot
- we can generate a line of best fit by either:

1. graphing the data on a grid and then using the edge of a clear ruler to approximate a line that best describes the points
2. put the data in the List function of your calculator and then perform a regression

- a regression function is a line or curve of best frt

developeci thwovan a statistical analysis of determining the line of best fit with your calculator requires the following procedures: the data

1. create a scatter plot of the data
a) clear all the data from your lists $\rightarrow 2^{\text {nd } /+/ 4 / E N T E R ~}+1 /$
b) place your data in the list \rightarrow STAT/ENTER

- if you notice that your lists do not go from L_{1} to L_{6}, use SetUpEditor \rightarrow STAT/5/ENTER
c) put the independent variable in L_{1} and the dependent variable in L_{2}
- press ENTER to have the data go into the list
- you must have the same number of elements in each list
d) your window settings must include both the smallest and largest values for the independent and dependent variables \rightarrow WINDOW
e) you can see the scatter plot by turning on your plots $\rightarrow 2^{\text {nd }} / Y=/$ ENTER
- make sure Plot 1 is On, the Type: is a scatterplot ($1^{\text {st }}$ choice in the $1^{\text {st }}$ row), the Xlist is $\mathbf{L}_{\mathbf{1}}$, the Ylist is $\mathbf{L}_{\mathbf{2}}$ and the Mark: is the first symbol

2. run a regression on the data

- in order to run a linear regression, use LinReg $(a x+b) \rightarrow$ STAT/ / /4/ENTER

3. graph the regression function with the scatter plot

- you can paste the regression equation directly into $\mathrm{Y}_{1}=$ by pressing the following keystrokes

- the process of interpolation is used to estimate a value within the domain of a set of data, based on a trend
- we can interpolate from our regression equation if we already know the x-value (independent variable)
- press $2^{\text {nd }} /$ TRACE $/ 1$ and then enter the known x-value at the $\mathbf{X}=$ prompt
- the process of extrapolation is used to estimate a value outside the domain of a set of data, based on a trend
- we can extrapolate from our regression equation if we already know the y-value (dependent variable)
- enter our known y-value into Y_{2}, press $2^{\text {nd }} /$ TRACE/5/ENTER/ENTER/ENTER and find the intersection
point

Ex \#1 The winning times for the menus 20 km biathlon in the Winter Olympics from 1964 to 2010 (except 2002) are shown in the table below.

Year	1964	1968	1972	1976	1980	1984
Winning Time (min)	80.4	73.8	75.9	74.2	68.3	71.9
Year	1988	1992	1994	1998	2006	2010
Winning Time (min)	56.6	57.6	57.4	56.2	54.3	48.4

a) Enter the data into your graphing calculator. The independent variable is the year $\left(\mathrm{L}_{1}\right)$ and the dependent variable is the winning time $\left(\mathrm{L}_{2}\right)$.
b) What Window settings should you use?

$$
x_{\min }=1960 \quad x_{\max }=2020 \quad x_{\min }=40 \quad y_{\max }=\frac{90}{}
$$

200 ms in

d) Perform a linear regression of the data. Write the linear regression equation for the scatter plot. Set your calculator to three decimals.

$$
y=-0.682 x+1419.391
$$

e) Paste the regression equation into $\mathrm{Y}_{1}=$. Add it to your sketch of the scatter plot in part c).
f) Determine a possible winning time for the event in the 2002 Winter Olympics. Will you use Value or Intersect? Is this an example of extrapolation or interpolation? Ind TRACE 1

g) Estimate the possible winning time for the event in the 2014 Winter Olympics? Will you use Value o intersect? Is this an example of extrapolation or interpolation?

