Squares and Square Roots on \# Lines

- Most \#'s awe not perfect squares
- Use \# lines to estimate the square roots of these \#'s

10 is between the perfect squares 9 and 16
\rightarrow so $\sqrt{10}$ is between $\sqrt{9}$ and $\sqrt{16}$

$$
=3=4
$$

so $\sqrt{10} \doteq 32$ which is between 3 and 4

$$
\underline{e x \# 1} \text { estimate } \sqrt{\frac{3}{10}}
$$

* 3 is close to the perfect
square 4
* 10 is close to the perfect square a

$$
\begin{gathered}
\sqrt{\frac{3}{10}}=\sqrt{\frac{4}{9}}=\frac{2}{3} \\
\text { so } \sqrt{\frac{3}{10}}=\frac{2}{3} \quad \text { \# double check } \\
\text { with calc }
\end{gathered}
$$

The Pythagorean Theorem -used in right triangles only

$$
a^{2}+b^{2}=c^{2}
$$

$\frac{E \bar{x} 2}{\text { Find }}$ length of hypotenuse

$$
\text { I, } \quad h^{2}=a^{2}+b^{2}
$$

$$
\begin{aligned}
12 \mathrm{~cm} \sum_{2} h^{2} & =a^{2}+b^{2} \\
& =5^{2}+12^{2} \\
& =25+144 \\
\sqrt{h^{2} \mathrm{~cm}} & =\sqrt{169} \\
h & =13 \mathrm{~cm} \\
\text { pg } 18 \geqslant 4,8 & -13,15,16
\end{aligned}
$$

