FOUNDATIONS OF MATHEMATICS

GRADE 11

[C] Communication	[PS] Problem Solving
[CN] Connections	[R] Reasoning
[ME] Mental Mathematics	[T] Technology
and Estimation	[V] Visualization

Measurement	General Outcome: Develop spatial sense and proportional reasoning.
Specific Outcomes It is expected that students will:	Achievement Indicators The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
A1. Solve problems that involve the application of rates. [CN, PS, R]	1.1 Interpret rates in a given context, such as the arts, commerce, the environment, medicine or recreation. 1.2 Solve a rate problem that requires the isolation of a variable. 1.3 Determine and compare rates and unit rates. 1.4 Make and justify a decision, using rates. 1.5 Represent a given rate pictorially. 1.6 Draw a graph to represent a rate. 1.7 Explain, using examples, the relationship between the slope of a graph and a rate. 1.8 Describe a context for a given rate or unit rate. 1.9 Identify and explain factors that influence a rate in a given context. 1.10 Solve a contextual problem that involves rates or unit rates.

[C] Communication	[PS] Problem Solving
[CN] Connections	[R] Reasoning
[ME] Mental Mathematics	[T] Technology
and Estimation	[V] Visualization

Measurement (continued)	General Outcome: Develop spatial sense and proportional reasoning.
Specific Outcomes It is expected that students will:	Achievement Indicators The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
A2. Solve problems that involve scale diagrams, using proportional reasoning. $[\mathrm{CN}, \mathrm{PS}, \mathrm{R}, \mathrm{~V}]$	2.1 Explain, using examples, how scale diagrams are used to model a 2-D shape or a 3-D object. 2.2 Determine, using proportional reasoning, the scale factor, given one dimension of a 2-D shape or a 3-D object and its representation. 2.3 Determine, using proportional reasoning, an unknown dimension of a 2-D shape or a 3-D object, given a scale diagram or a model. 2.4 Draw, with or without technology, a scale diagram of a given 2-D shape according to a specified scale factor (enlargement or reduction). 2.5 Solve a contextual problem that involves scale diagrams.
A3. Demonstrate an understanding of the relationships among scale factors, areas, surface areas and volumes of similar 2-D shapes and 3-D objects. $[\mathrm{C}, \mathrm{CN}, \mathrm{PS}, \mathrm{R}, \mathrm{~V}]$	3.1 Determine the area of a 2-D shape, given the scale diagram, and justify the reasonableness of the result. 3.2 Determine the surface area and volume of a 3-D object, given the scale diagram, and justify the reasonableness of the result. 3.3 Explain, using examples, the effect of a change in the scale factor on the area of a 2-D shape. 3.4 Explain, using examples, the effect of a change in the scale factor on the surface area of a 3-D object. 3.5 Explain, using examples, the effect of a change in the scale factor on the volume of a 3-D object. 3.6 Explain, using examples, the relationships among scale factor, area of a 2-D shape, surface area of a 3-D object and volume of a 3-D object. 3.7 Solve a spatial problem that requires the manipulation of formulas. 3.8 Solve a contextual problem that involves the relationships among scale factors, areas and volumes.

[C] Communication	[PS] Problem Solving
[CN] Connections	[R] Reasoning
[ME] Mental Mathematics	[T] Technology
and Estimation	[V] Visualization

Geometry	General Outcome: Develop spatial sense.		
Specific Outcomes			
It is expected that students will:		\quad	The following set of indicators may be used to determine whether students have met the
:---			
corresponding specific outcome.			

[C] Communication	[PS] Problem Solving
[CN] Connections	[R] Reasoning
[ME] Mental Mathematics	[T] Technology
and Estimation	[V] Visualization

Logical Reasoning	General Outcome: Develop logical reasoning.
Specific Outcomes It is expected that students will:	Achievement Indicators The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
C1. Analyze and prove conjectures, using inductive and deductive reasoning, to solve problems. [C, CN, PS, R]	1.1 Make conjectures by observing patterns and identifying properties, and justify the reasoning. 1.2 Explain why inductive reasoning may lead to a false conjecture. 1.3 Compare, using examples, inductive and deductive reasoning. 1.4 Provide and explain a counterexample to disprove a given conjecture. 1.5 Prove algebraic and number relationships, such as divisibility rules, number properties, mental mathematics strategies or algebraic number tricks. 1.6 Prove a conjecture, using deductive reasoning (not limited to two column proofs). 1.7 Determine if a given argument is valid, and justify the reasoning. 1.8 Identify errors in a given proof; e.g., a proof that ends with $2=1$. 1.9 Solve a contextual problem involving inductive or deductive reasoning.
C2. Analyze puzzles and games that involve spatial reasoning, using problem-solving strategies. [CN, PS, R, V]	(It is intended that this outcome be integrated throughout the course by using sliding, rotation, construction, deconstruction and similar puzzles and games.) 2.1 Determine, explain and verify a strategy to solve a puzzle or to win a game; e.g., - guess and check - look for a pattern - make a systematic list - draw or model - eliminate possibilities - simplify the original problem - work backward - develop alternative approaches. 2.2 Identify and correct errors in a solution to a puzzle or in a strategy for winning a game. 2.3 Create a variation on a puzzle or a game, and describe a strategy for solving the puzzle or winning the game.

[C] Communication	[PS] Problem Solving
[CN] Connections	[R] Reasoning
[ME] Mental Mathematics	[T] Technology
and Estimation	[V] Visualization

Statistics	General Outcome: Develop statistical reasoning.
Specific Outcomes It is expected that students will:	Achievement Indicators The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
D1. Demonstrate an understanding of normal distribution, including: - standard deviation - z-scores. [CN, PS, T, V]	1.1 Explain, using examples, the meaning of standard deviation. 1.2 Calculate, using technology, the population standard deviation of a data set. 1.3 Explain, using examples, the properties of a normal curve, including the mean, median, mode, standard deviation, symmetry and area under the curve. 1.4 Determine if a data set approximates a normal distribution, and explain the reasoning. 1.5 Compare the properties of two or more normally distributed data sets. 1.6 Explain, using examples that represent multiple perspectives, the application of standard deviation for making decisions in situations such as warranties, insurance or opinion polls. 1.7 Solve a contextual problem that involves the interpretation of standard deviation. 1.8 Determine, with or without technology, and explain the z-score for a given value in a normally distributed data set. 1.9 Solve a contextual problem that involves normal distribution.

[C] Communication	[PS] Problem Solving
[CN] Connections	[R] Reasoning
[ME] Mental Mathematics	[T] Technology
and Estimation	[V] Visualization

Statistics (continued)	General Outcome: Develop statistical reasoning.
Specific Outcomes It is expected that students will:	Achievement Indicators The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
D2. Interpret statistical data, using: - confidence intervals - confidence levels - margin of error. [C, CN, R]	(It is intended that the focus of this outcome be on interpretation of data rather than on statistical calculations.) 2.1 Explain, using examples, how confidence levels, margin of error and confidence intervals may vary depending on the size of the random sample. 2.2 Explain, using examples, the significance of a confidence interval, margin of error or confidence level. 2.3 Make inferences about a population from sample data, using given confidence intervals, and explain the reasoning. 2.4 Provide examples from print or electronic media in which confidence intervals and confidence levels are used to support a particular position. 2.5 Interpret and explain confidence intervals and margin of error, using examples found in print or electronic media. 2.6 Support a position by analyzing statistical data presented in the media.

[C] Communication	[PS] Problem Solving
[CN] Connections	[R] Reasoning
[ME] Mental Mathematics	[T] Technology
and Estimation	[V] Visualization

Relations and Functions	General Outcome: Develop algebraic and graphical reasoning through the study of relations.
Specific Outcomes It is expected that students will:	Achievement Indicators The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
E1. Model and solve problems that involve systems of linear inequalities in two variables. [CN, PS, T, V]	1.1 Model a problem, using a system of linear inequalities in two variables. 1.2 Graph the boundary line between two half planes for each inequality in a system of linear inequalities, and justify the choice of solid or broken lines. 1.3 Determine and explain the solution region that satisfies a linear inequality, using a test point when given a boundary line. 1.4 Determine, graphically, the solution region for a system of linear inequalities, and verify the solution. 1.5 Explain, using examples, the significance of the shaded region in the graphical solution of a system of linear inequalities. 1.6 Solve an optimization problem, using linear programming.

[C] Communication	[PS] Problem Solving
[CN] Connections	[R] Reasoning
[ME] Mental Mathematics	[T] Technology
and Estimation	[V] Visualization

Relations and Functions (continued)	General Outcome: Develop algebraic and graphical reasoning through the study of relations.
Specific Outcomes It is expected that students will:	Achievement Indicators The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
E2. Demonstrate an understanding of the characteristics of quadratic functions, including: - vertex - intercepts - domain and range - axis of symmetry. [CN, PS, T, V]	(It is intended that completion of the square not be required.) 2.1 Determine, with or without technology, the intercepts of the graph of a quadratic function. 2.2 Determine, by factoring, the roots of a quadratic equation, and verify by substitution. 2.3 Determine, using the quadratic formula, the roots of a quadratic equation. 2.4 Explain the relationships among the roots of an equation, the zeros of the corresponding function, and the x-intercepts of the graph of the function. 2.5 Explain, using examples, why the graph of a quadratic function may have zero, one or two x-intercepts. 2.6 Express a quadratic equation in factored form, using the zeros of a corresponding function or the x-intercepts of its graph. 2.7 Determine, with or without technology, the coordinates of the vertex of the graph of a quadratic function. 2.8 Determine the equation of the axis of symmetry of the graph of a quadratic function, given the x-intercepts of the graph. 2.9 Determine the coordinates of the vertex of the graph of a quadratic function, given the equation of the function and the axis of symmetry, and determine if the y-coordinate of the vertex is a maximum or a minimum. 2.10 Determine the domain and range of a quadratic function. 2.11 Sketch the graph of a quadratic function. 2.12 Solve a contextual problem that involves the characteristics of a quadratic function.

[C] Communication	[PS] Problem Solving
[CN] Connections	[R] Reasoning
[ME] Mental Mathematics	[T] Technology
and Estimation	[V] Visualization

Mathematics Research Project	General Outcome: Develop an appreciation of the role of mathematics in society.
Specific Outcomes It is expected that students will:	Achievement Indicators The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
F1. Research and give a presentation on a historical event or an area of interest that involves mathematics. $[\mathrm{C}, \mathrm{CN}, \mathrm{ME}, \mathrm{PS}, \mathrm{R}, \mathrm{~T}, \mathrm{~V}]$	1.1 Collect primary or secondary data (statistical or informational) related to the topic. 1.2 Assess the accuracy, reliability and relevance of the primary or secondary data collected by: - identifying examples of bias and points of view - identifying and describing the data collection methods - determining if the data is relevant - determining if the data is consistent with information obtained from other sources on the same topic. 1.3 Interpret data, using statistical methods if applicable. 1.4 Identify controversial issues, if any, and present multiple sides of the issues with supporting data. 1.5 Organize and present the research project, with or without technology.

