3.1 Exploring Side-Angle Relationships in Acute Triangles
February 15, 2016
Acute Triangle has intenor angles less than

* no 1 angles

In an acute triangle. $\triangle A B C$,

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Ex \#1

$$
\sin 83.3^{\circ}=\frac{h}{37.3}
$$

$\sin 465=\frac{h}{51.2}$

$$
\begin{array}{r}
373 \cdot \sin 83.3=h \\
3704=h
\end{array}
$$

$512 \cdot \sin 46.5=h$

$$
37.4=h
$$

Ex.\#2 solve $\triangle A B C$

formula

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

$$
\frac{\operatorname{sir}) A}{a}=\frac{\sin D}{b}=\frac{\sin C}{c}
$$

$$
\frac{\sin B}{b}=\frac{\sin C}{c} \Rightarrow \frac{\sin 29^{\circ}}{30} \Rightarrow \frac{\sin 105^{\circ}}{q}
$$

$$
\frac{c \cdot \sin 29^{\circ}}{\sin 29^{\circ}}=\frac{30 \cdot \sin 105^{\circ}}{\sin 29^{\circ}}
$$

$\sin 46^{\circ}=\frac{h}{30}$

$$
h y p=44.6 \mathrm{~cm}
$$

$$
h=216 \mathrm{~cm}
$$

Ex\#3 Sketch a triangle that wrresponds to each equation and solve for x

$$
\begin{array}{r}
\frac{x \sigma}{\sin 40^{\circ}}=\frac{78}{\sin 60^{\circ}} \Rightarrow \frac{\sin 60^{\circ} x}{\sin 60^{\circ}}=\frac{8 \cdot \sin 40^{\circ}}{\sin 60^{\circ}} \\
x=59
\end{array}
$$

pg 117 \#1.2
pg 129 \#1-3

