The sine law can be used to determine unknown side lengths or angle measures in acute triangle
Sine Law


In any acute triangle

$$
\text { sades } \rightarrow \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

*use when determining side lengths!

* when determining angles, its more convenient to use!

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

Ex \#1
Find $\theta$ and $\alpha$ unknown angles


$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin B}{b} \\
\frac{\sin A}{2.2} & =\frac{\sin 86^{\circ}}{2.8} \\
(\sin A) & =\frac{(2.2)\left(\sin 86^{\circ}\right)}{2.8} \\
\sin A & =(0.78) \\
A & =\sin ^{-1}(0.78)
\end{aligned}
$$

$$
\begin{array}{rlrl} 
& A & =\sin ^{-1}(0,78) \\
& =51.6^{\circ} \approx 52^{\circ} \\
=42^{\circ}-52^{\circ}-86^{\circ} & &
\end{array}
$$

Ex.\#2 Solve $\angle B$ ?

pg. 124 \#1-6, 13,15

$$
\begin{aligned}
& \frac{\sin B}{b}=\frac{\sin C}{c} \\
& \frac{\sin B}{9}=\frac{\sin 80^{\circ}}{12} \\
& \sin B=\frac{9 \cdot \sin 80^{\circ}}{12}
\end{aligned}
$$

$$
\sin B=0.7386
$$

$$
B=\sin ^{-1}(0,7386)
$$

$$
=47.6 \approx 48^{\circ}
$$

