3.2 Exploring the Pythagorean Relationship

Right triangle

- right angle (90)

- marked with a

* longest side is calked hypotenuse (hyp)
Pythagorean Theorem
the relationship between the lengths of the sides of a right triangle

Ex .\#1
a.)

$a^{2}+b^{2}=c^{2}$
b)
${ }^{a}$,

$a^{2}+b^{2}=c^{2}$
rearrange the equation

$$
\begin{aligned}
3^{2}+4^{2}=c^{2} & b^{2}=c^{2}-a^{2} \\
9+16=c^{2} & a^{2}=c^{2}-b^{2} \\
\sqrt{25}=\sqrt{c^{2}} & a^{2}=7^{2}-5^{2} \\
5=c & \sqrt{a^{2}}=\sqrt{24}-25 \\
& a=4.89
\end{aligned}
$$

Ex $x^{\text {He }}$

$$
\begin{aligned}
a^{2} & =c^{2}-b^{2} \\
& =7^{2}-4^{2} \\
& =49-16 \quad \text { area } 5.7 \times 57 \\
\sqrt{a^{2}} & =\sqrt{33} \sigma^{2} \\
a & =57
\end{aligned}
$$

$$
a=5.7
$$

pg 92 \#4-20

