5.5 Multiplying \& Dividing a Polynomial by a Constant
May 12, 2015 1:03 PM

* Use the Distributive Property to multiply a polynomial by a constant

$$
\begin{aligned}
& \frac{E x+1}{(a)-5\left(4 e^{2}-5 e+3\right)} \\
& =-20 e^{2}+25 e-15
\end{aligned}
$$

\#Use a Model (Rectangle)

$$
E x \# 2
$$

Write the multiplication sentence modelled by each rectangle
(a)

(b)

$$
\begin{aligned}
& \text { (length) } \times(\text { width }) \\
& =4(m+4) \\
& =4 m+16
\end{aligned}
$$

$$
=5 w+30
$$

\# Use Algebra Tile

Ex 3
To multiply $2(4 x)$ with algebra tiles $=8 x$
, Model 2 wows of $4 \square$
2 Solve

$$
\Rightarrow 2(4 x)
$$

Ex \#5 Write the multiplication sentence represented by these tiles

$$
\begin{aligned}
\frac{1 x}{} \left\lvert\, \begin{array}{l}
\mid x \\
\square \square \square \\
\square \square \square \square
\end{array}\right. & =2(x+3)
\end{aligned}
$$

Division
Ex \#6 Find the quotient

$$
\begin{array}{ll}
\text { (a) } \frac{-9 v^{2}+6}{3} & \text { (b) } \frac{(6 s-9)}{3} \\
=\frac{-9 v^{2}}{3}+\frac{6}{3} & =\frac{6 s}{3}-\frac{9}{3} \\
=-3 v^{2}+2 & =2 s-3
\end{array}
$$

Ex \#1 White the chivision sentence modelled by the tiles and solve

Multiply. $\begin{aligned} &(2 x)(2 x+5) \\ &=4 x^{2}+10 x\end{aligned}$

$$
=4 x^{2}+10 x
$$

Division

$$
\begin{aligned}
\frac{4 x^{2}+10 x}{2 x} & =\frac{4 x^{2}}{2 x}+\frac{10 x}{2 x} \\
& =2 x+5
\end{aligned}
$$

Ex\# 1
Find the quotient $(6 s-9)-3$
Arrange $6 \square$ and 9 into 3 equal rows

$$
\begin{gathered}
2 x-3 \\
3(2 x-3) \\
=6 x-9
\end{gathered}
$$

