NOTES 6.1: Exploring the Graphs of Polynomial Functions

- April 21, 2016 9:08 AM
- a *polynomial function* in one variable contains only the operations of multiplication and addition with real-number coefficients and whole-number exponents
 - $\frac{\mathbf{ex.}}{y} = 4x^3 + 3x^2 2x + 5$
 - can also be written as:
- the degree of a function in one variable is the <u>oreatest exponent on any</u> (<u>ex</u>.
 - $y = 4x^{3} + 3x^{2} 2x + 5$
- the *x*-intercept is where a function crosses the *x*-axis and can be written as the ordered pair (X)
- the *y*-*intercept* is where a function crosses the *y*-axis and can be written as the ordered pair
- a turning point is any point where the graph of a function <u>Changes from</u> Increasing to decreasing or vite versa
 - a graph does not have a turning point if the *y*-values always increase or decrease
- the *end behaviour* is a description of the <u>y-values</u> of a graph as you move from <u>left</u> on the coordinate plane
 - the four possible end behaviors are (+,+), (+,-), (-,-) or (-,-)
- the domain is the set of possible <u>× values</u> of a function
- the range is the set of possible <u>Y</u> Values of a function
- the degree of a polynomial function indicates the shape of the function

Function Type	constant	- linear	quadratic	cubic
Degree, n	0	. 1	2	3
Sketch	$\begin{array}{c c} & & & & & \\ \end{array}$			
Number of x-intercepts	0 (except $y = 0$)	1	0, 1, or 2	1, 2, or 3
y-intercepts	ী	1	1	1
Turning Points	0	0	1	0 or 2
End Behaviour	extends from (+,+) Quadrant II to Quadrant I or (-,-) from Quadrant III to Quadrant IV	extends from (+, -) Quadrant III to Quadrant I or (-, +) from Quadrant II to Quadrant IV	extends from $(+, f)$ Quadrant II to or Quadrant I or $(-, -)$ from Quadrant III to Quadrant IV	extends from (+ , -) Quadrant III to or Quadrant I or (- , +) from Quadrant II to Quadrant IV
Domain	$\{x \mid x \in R\}$	$\{x \mid x \in R\}$	$\{x \mid x \in R\}$	$\{x \mid x \in R\}$
Range	$\{y \mid y = c, y \in R\}$	$\{y \mid y \in R\}$	$\{y \mid y \le \text{maximum}, \\ y \in R\} \text{ or } \{y \mid y \ge \\ \text{minimum}, y \in R\}$	$\{y \mid y \in R\}$

• use the table to answer the following questions

- 1. How is the possible number of *x*-intercepts related to the degree of the polynomial?
- the max # of x-int is = to the degree Le even # > even # of x-int Lo odd # > odd # of x-int
- 2. Do all polynomial functions of degree 1, 2 or 3 have only one *y*-intercept? Explain.

3. Describe how the end behaviour of a polynomial function is related to the degree of the function.

even degree =
$$(+, +)$$
 or $(-, -)$
odd degree = $(+, -)$ or $(-, +)$

4. Describe how the domain and range of a polynomial function are related to its degree.
Jonan (X-axis) = all real #
range (Y-axis)
Jock degree = range is all real #
Jock degree = max or min of Arction
5. Explain why some cubic polynomial functions have turning points but not maximum or minimum values.

6. Polynomial functions of degree 0 are called constant functions. Describe characteristics of the graphs of constant functions.