8.1 Properties of Tangents to a Circle

RECALL
sum of a triangle


$$
a+b+c=180^{\circ}
$$

Pythagorean Theorum

$$
a^{2}+b^{2}=c^{2}
$$

Ex.\#1

$$
\begin{aligned}
& \frac{a^{2} y 60^{\circ}+7 \mathrm{~cm}^{2}}{8 \mathrm{~cm}} \mathrm{c}^{2} \\
& \angle X \Rightarrow 90+60=\frac{180}{30^{\prime}} \\
& a^{2}+b^{2}=c^{2} \\
& a^{2}+7^{2}=8^{2} \\
& \begin{aligned}
a^{2}+49 & =64 \\
-4 / 9 & -49
\end{aligned} \\
& \sqrt{a^{2}}=\sqrt{15} \\
& a=387 \mathrm{~cm}
\end{aligned}
$$

A tangent touches a circle at exactly I
point


Tangent Radius Property


A tangent to a arcle is perpendicular to the radius drown to the point of tangency
So $O P \perp A B$

$$
\begin{aligned}
& \angle O P A=90^{\circ} \\
& \angle O P B=90^{\circ}
\end{aligned}
$$

Ex \#1
Find the measure of $x^{\circ}$

at is tangent to the circle 0 is the centre of the circle

$$
90+50 \frac{180}{=-140} 440^{\circ}
$$

Ex .\#2

$M B$ is tangent to the
circle at B
$O$ is the centre
find the length of the radius $O B$ (v)


$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
a^{2}+8^{2}=10^{2} \\
a^{2}+64=100 \\
\frac{-64}{-}-64
\end{gathered}
$$

$$
\begin{array}{r}
\frac{-64}{\sqrt{a^{2}}}=\sqrt{36} \\
a=6 \\
\operatorname{pg} 388 \# 3-9,13
\end{array}
$$

