Foundations of Mathematics and Pre-Calculus 10

Sample Questions for Algebra and Number

Instructions

1. You may require a protractor and a ruler (metric and imperial) for paper versions of the questions.

2. You may use math tiles.

3. When using your calculator (scientific or approved graphing calculator):
 • use the programmed value of π rather than the approximation of 3.14.
 • round only in the final step of the solution.

4. Diagrams are not necessarily drawn to scale.

5. For questions marked with \square, do not use your calculator.
PART A: MULTIPLE-CHOICE QUESTIONS

1. Which of the following powers is a perfect cube?

 A. 3^2
 B. 5^6
 C. 6^4
 D. 9^2

2. Write as a single power: $\frac{12^3}{4^3}$

 A. 3^0
 B. 3^3
 C. 8^3
 D. 48^6

3. Given $x > 1$, arrange from the least to the greatest:

 $\sqrt{x}, \frac{1}{\sqrt[3]{x}}, \frac{3}{\sqrt{x}}$

 A. $\frac{1}{\sqrt[3]{x}}, \sqrt{x}, \frac{3}{\sqrt{x}}$
 B. $\frac{1}{\sqrt[3]{x}}, \frac{3}{\sqrt{x}}, \sqrt{x}$
 C. $\sqrt{x}, \frac{3}{\sqrt{x}}, \frac{1}{\sqrt[3]{x}}$
 D. $\frac{3}{\sqrt{x}}, \frac{1}{\sqrt[3]{x}}, \sqrt{x}$
4. Two gears are shown below in their starting position.
 - Gear 1 has 6 teeth.
 - Gear 2 has 8 teeth.
 - As Gear 1 turns, it causes Gear 2 to turn at a different rate.
 - Gear 1 is rotated until the two gears are back to this starting position.

 Starting Position:

 What is the minimum number of rotations Gear 1 requires to return to this starting position?
 A. 48 rotations
 B. 24 rotations
 C. 4 rotations
 D. 2 rotations

5. Three students were asked to show steps for simplifying \(\sqrt[3]{1080} \) to \(6 \sqrt[5]{5} \).

<table>
<thead>
<tr>
<th>Jean</th>
<th>Sally</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sqrt[3]{1080} = \sqrt[3]{2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 5})</td>
<td>(\sqrt[3]{1080} = \sqrt[3]{216 \times 5})</td>
<td>(\sqrt[3]{1080} = \sqrt[3]{27 \times 5 \times 8})</td>
</tr>
<tr>
<td>(= (2 + 3)(\sqrt[5]{5}))</td>
<td>(\sqrt[3]{216} = 6)</td>
<td>(= 3 \times \sqrt[5]{5} \times 2)</td>
</tr>
<tr>
<td>(= 6 \sqrt[5]{5})</td>
<td>(\therefore \sqrt[3]{1080} = 6 \sqrt[5]{5})</td>
<td>(= 6 \sqrt[5]{5})</td>
</tr>
</tbody>
</table>

Which student made a mistake, if any?
 A. Jean
 B. Sally
 C. Mark
 D. All of them show correct work.
6. Simplify: \(\left(\frac{-54x^6y}{2x^{-3}y^{4}} \right)^{\frac{4}{3}} \)

A. \(-36x^4y^4\)
B. \(-\frac{36x^{12}}{y^4}\)
C. \(81x^4y^4\)
D. \(\frac{81x^{12}}{y^4}\)

7. Determine a simplified expression for the lateral surface area of the prism below.

A. \(8x^2 + 16x\)
B. \(8x^2 + 20x + 8\)
C. \(16x^2 + 16x - 2\)
D. \(4x^3 + 8x^2 - x - 2\)
8. Determine an expression for the area of the largest square in the diagram below.

![Diagram](image)

A. $4x^2 + 25$
B. $4x^2 - 20x + 25$
C. $5x^2 + 26$
D. $5x^2 - 18x + 26$

9. Derek expanded and simplified $(x - 3)(2x^2 + 5x - 8)$ as shown below.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2x^2$</td>
<td>$2x^3$</td>
<td>$-6x^2$</td>
</tr>
<tr>
<td>$+ 5x$</td>
<td>$5x^2$</td>
<td>$-15x$</td>
</tr>
<tr>
<td>$- 8$</td>
<td>$-8x$</td>
<td>-24</td>
</tr>
</tbody>
</table>

In which step is Derek’s first mistake?

A. Step I
B. Step II
C. Step III
D. Step IV
10. When $5x^2 - 20$ is factored, how many factors are in the result?

A. 2
B. 3
C. 4
D. 5

11. One of the factors of $3x^2 - 16x + k$ is $(x - 7)$. Determine the value of k.

A. –35
B. –9
C. 5
D. 63

12. When factoring $x^2 - 7x + 6$ to the form $(x + a)(x + b)$, which two of the following characteristics are true?

<table>
<thead>
<tr>
<th></th>
<th>(ab = -7)</th>
<th>(a + b = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>(ab = 6)</td>
<td>(a + b = -7)</td>
</tr>
<tr>
<td>III</td>
<td>(a > 0) and (b > 0)</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>(a < 0) and (b < 0)</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>(a > 0, \ b < 0) or (a < 0, \ b > 0)</td>
<td></td>
</tr>
</tbody>
</table>

A. I and III
B. I and IV
C. II and IV
D. II and V
13. Which of the following areas formed by math tiles is factorable?

A.

B.

C.

D.
14. Determine the missing tiles, labelled \(w \), in the tile model below.

A.

B.

C.

D.

PART B: NUMERIC-RESPONSE QUESTIONS

15. Given \(\sqrt[\frac{1}{2}]{x^{10}} = x^2 \), determine the value of \(n \). Answer to the nearest integer.

Record your answer neatly on the Answer Sheet.
16. When \(\left(\frac{4}{5} \right)^{\frac{7}{10}} \left(\frac{5}{7} \right)^{\frac{3}{5}} \) is simplified to \(7^n \), determine the value of \(n \). Answer to two decimal places.

Record your answer neatly on the Answer Sheet.